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Abstract. Gait sensing by means of accelerometers yields quasi-periodic
signals that can be analyzed in order to extract useful information. This
paper introduces a method based on a Fuzzy Finite State Machine with
temporary restrictions for tracking and recognizing the different states of
human walking. Such operation is a mandatory task prior to perform a
subsequent analysis on gait quality. Besides, the method described here
allows to achieve this recognition when the sensing device, i.e. a smart-
phone, is being carried by the user in arbitrary orientations related to
his/her body’s natural axes.

1 Introduction

Human gait analysis and the development of practical applications with the
extracted information represent a huge challenge for engineers, physical thera-
pists and doctors alike. This is partly because human walking is an extremely
complex process that changes from a given person to another, but also change
for the same person walking under different physical —surface, footwear— or
psychological conditions.
However, gait analysis is a valuable source of knowledge about the health

condition of a patient. It might be a key part in clinical assessment of several
pathologies, ranging from those merely physical to complex diseases like Parkin-
son [1] or, most notably, cerebral palsy [2]. Unfortunately this often requires
a considerable amount of resources —professionals, laboratory time, expensive
equipment, etc— and the monitoring scope is limited. In addition it is a well-
known fact that people under a test environment do not behave in the same way
as they would normally do [3].
Recent efforts have been made to apply intelligent systems to gait analysis in

order to cope with some of these drawbacks, specially the need for a passive, long-
term monitoring system. Computer vision [4] is one of these techniques, however
it introduces other disadvantages in the shape of high complexity, limited spatial
scope and, most importantly, privacy issues.
Another option is the acceleration-based gait sensing. This technique is able

to record the human walking with an acceptable degree of accuracy and therefore
to extract meaningful —although limited— information about its quality in a
long-term tracking period. Previous researches in this field have opted to use a

J. Bravo, R. Hervás, and M. Rodŕıguez (Eds.): IWAAL 2012, LNCS 7657, pp. 224–231, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Gait Quality Monitoring Using an Arbitrarily Oriented Smartphone 225

triple axis accelerometer attached to the user’s body to measure gait quality [5],
so the directions of those axes are aligned with the natural axes of the person.
This represents a considerable setback when the goal is to design systems in
order to be as less obtrusive as possible. In these systems users are forced to
constantly take care of the position of the device because the system would not
work if it is not properly placed.
The approach taken in this paper, by contrast, is to explore the possibility of

monitoring the gait quality of the user without any condition regarding the ori-
entation of the device, and therefore without significantly change his/her habits
or behaviors. An important role in this vision is the device itself. Nowadays
many people in the western countries —where also fast population ageing is
becoming an important concern— carries some sort of mobile device, namely a
smartphone or a PDA, for long periods of time each day. These gadgets usually
have a built-in accelerometer, good computational performance and internet ac-
cess capabilities, so they are potentially very interesting tools for the purpose of
monitoring human activity.
Section 2 describes briefly our approach to Fuzzy Finite State Machines; sec-

tion 3 describes how to apply this concept to model the human gait; section 4
presents a way of defining the gait quality; section 5 describes a basic experi-
mentation and finally, section 6 contains the conclusions.

2 Fuzzy Finite State Machine with Temporary

Restrictions

Once the acceleration data is acquired, the question that remains is how to effec-
tively treat it to be able to identify the different states of gait. Many possibilities
arise, being Hidden Markov Models maybe the most common method due to its
extensive and successful employment in gait recognition [6]. Our approach on
this matter, however, diverges from machine learning solutions and it is inspired
instead by the concept of Linguistic Fuzzy Modeling [7].
Linguistic Fuzzy Modeling allows to describe a system from a qualitative point

of view by means of linguistic variables, i.e. variables whose values are taken from
natural language, and by the relations between these variables in the shape of
conditional fuzzy statements. Given that variables and relations are established
by an expert designer based on his/her knowledge and experience, the models
tend to be reliable yet conceptually easy to understand, which is a desirable
feature when dealing with complex processes like human gait.
Another feature of gait is that it produces quasi-periodic signals when mag-

nitudes like acceleration are measured. This means that these values roughly
repeat in time under a period that may not be constant either. Given such con-
ditions —complexity and quasi-periodicity—, a suitable linguistic model that
has already been successfully applied in previous works [8][9] is the Fuzzy Finite
State Machine (FFSM). Here, a refinement of this type of model is proposed
taking into account that human walking is a process subject to some obvious
physical limitations. This means that additional knowledge can be added to the
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model in the form of “intuition” about what will happen next. We call this model
Fuzzy Finite State Machine with temporary restrictions and it is defined by the
following tuple:

{Q,S, S′, U, Y, f, g}

where:

– Q is the set of states defined by the designer based on his/her perceptions
about the behavior of the system.

– S is a vector that contains the degree of activation of each state at a given
moment.

– S′ is a vector that contains the predicted degree of activation of each state at
given moment. It also relies on the designer’s interpretation of phenomena.

– U is a vector containing the numerical values of the input variables.
– Y is the output vector of the system.
– f is the transition function that yields the next activation vector given
the input and the current and predicted degrees of activation. S [t+ 1] =
f (S [t] , S′ [t+ 1] , U [t]).

– g is the output function: Y [t] = g (S [t] , U [t]).

The key part of the model is the transition function which is defined through a
set of fuzzy conditional statements. There is potentially one statement per each
possible change of state and these statements operate over inputs as linguistic
variables. The number of statements and their content are up to the designer
but, generally, a rule for changing from state i to state j is shaped as follows:

Rij = Rk : IF (S [t] is Qi) AND (Cij) AND (S
′ [t+ 1] is Qj)

THEN S [t+ 1]→ Qj

Where Cij is the set of fuzzy statements that evaluates to what degree the input
variables meet the criteria of the given transition.
After assessing the antecedent of every rule, a set of firing degrees {wk}

N
k=1

is obtained. Each degree represents the likelihood of transition to a given state
and the combination of all of them yields S [t+ 1].

3 A Human Gait Model

As said before, the approach proposed here needs a designer, who, using his
experience and knowledge, has to choose the parameters of the FFSM. The
most relevant are, perhaps, the number of considered states and their meaning
because they define how the system is expected to behave.
Human gait can be explained as a cyclic process involving several phases.

The most widely accepted models consider up to 7 different states for each leg
[10], which, in addition, overlap in time. To avoid such complexity, we propose a
simpler model that has only two states, namely double support and swing. Swing
refers to the leg that moves forward. By contrast, if the leg in contact with
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Fig. 1. Human gait model

Fig. 2. States and transitions of the FFSM

the ground is considered, the state should be called double support. This way of
defining states is slightly based on the former models, but it is also backed up by

the orientation-independent resultant acceleration signal (ρ =
√

a2x + a
2
y + a

2
z),

in which both states can be easily recognized (Figure 1).
Double support starts when one of the legs is finishing its swinging state and

the heel is about to make the initial contact. As the hit happens, the acceleration
becomes greater until it reaches a maximum and then, the person starts to move
his/her body weight towards the forward leg. The state ends when the back
foot takes off and the forward foot lays flat. This produces an slightly upwards
thrust —spotted as the second local maximum— that will lift the body on the
following swing phase, leading it to reach its highest point on the cycle. While
the acceleration is kept low, the back leg starts to move forward until the heel
hits the ground again and a new cycle starts.
On the other hand, an additional state has to be added in order to build a

practical FFMS that takes into account the case in which the acceleration signal
doesn’t meet the double support nor the swing state conditions. When the user
starts an activity other than walking, the sensed signal has nothing to do with
the typical gait signal. Therefore, the FFSM has to acknowledge this situation
and transition to the referred unknown state.
Once the states are defined, the connections between them have to be estab-

lished —again from the designer’s experience and knowledge—. In this case the
scheme chosen is shown in Figure 2. There is a transition from each state to the
rest, except for the case of the unknown state, in which it is only possible to go
to the double support state, considered as the start of the cycle. This decision
has been made in order to make the system simpler and more robust.
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The inputs considered are the above-mentioned resultant acceleration signal,
ρ, and its successive derivatives, ρ′ and ρ′′. All signals are axes independent and
thus they are suitable for the proposed goal of modeling human gait irrespective
of the orientation of the sensing device. These signals are previously low pass
filtered in order to get rid of the spurious accelerations that appear at high
frequencies and are not naturally produced by the human gait. A fair cut off point
could be 5 Hz as it is unlikely that a person is able to perform movements with
a period lower than 200 ms. Sampling frequency in cutting edge smartphones
is around 60 Hz —i.e. way more than twice the considered bandwith of 5 Hz—
so capturing every meaningful movement is assured. In addition, the gravity
influence is canceled and the signal is normalized in order to ease and simplify
the FFSM.
An important issue that has not been tackled yet is how the predicted state

vector, S′, is built. In this case, the first thing to do is estimate the step period
(Tstep). This can be achieved by performing a Fast Fourier Transform (FFT) on
the resultant acceleration and subsequently detecting its dominant frequency.
Once the step period is known, it is necessary to split it according to the per-
centage of time spent in each of both gait states. Based on previous experience,
a reasonable balance might be 30% for double support and 70% for swing.
S′ [t+ Tstep] is then constructed by chaining two fuzzy membership functions

that represent the expected lasting time of each state. This has to be done every
time the FFSM transitions to double support state at time t.
Figure 3 shows how the FFSM is able to recognize the temporal evolution of

the gait while it is shifting between the two states.

4 Gait Quality Parameters

Taking into account the obvious limitations of dealing with just the resultant
acceleration, four quality parameters are proposed: Double Support Symmetry
(DSS), Swing Symmetry (SS), Double Support Homogeneity (DSH) and Swing
Homogeneity (SH). Here, this vector of four parameters can be considered the
output Y of the FFSM.
The first step is to segment the total walking signal using the FFSM. Once the

segmentation is done, three values are extracted for each k set and state: average
acceleration (ρ̄k), duration (∆tk) and peak acceleration (max(ρk) or min(ρk))
(Figure 3). Comparing these values across different sets of samples will allow to
obtain the above-mentioned parameters.

4.1 Symmetry

Symmetry aims to capture how balanced the gait is by comparing two set of
acceleration samples that belong to the same state. These two sets of samples
have to appear one after another so they represent different legs. Duration and
acceleration values are then computed for each couple (Figure 4) through a
function that yields a value between 0 and 1, with 1 meaning a total match
between sets.
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Fig. 3. State segmentation and comparing values

Fig. 4. Symmetry

At the end, two vectors, mDS and mS , are obtained, with their lengths de-
pending on how long the total walking signal is. Symmetry’s parameters, DSS
and SS, can be then calculated as:

DSS = mean
(

mDS
)

∈ [0, 1], SS = mean
(

mS
)

∈ [0, 1]

4.2 Homogeneity

Homogeneity focuses on the similarity of sets of acceleration samples that are
not successive —specifically, that have another set of the same state between
them— (Figure 5), and therefore represent the same leg.
Again, ρ̄k, ∆tk and max(ρk) —or min(ρk)— are considered, so a vector for

each parameter, leg and state is built. These vectors are computed through a
function that produces a value between 0 and 1 for each state and leg: DSHA,
DSHB, SHA and SHB. It is not possible for the method to tell if the leg is the
right or the left one, so the notation of A/B is used to refer to each leg.
Finally, homogeneity’s parameters, DSH and SH , are calculated as:

DSH =
DSHA +DSHB

2
∈ [0, 1], SH =

SHA + SHB

2
∈ [0, 1]
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...

...

Fig. 5. Homogeneity

Table 1. Tests performed

Measure DSS DSH SS SH

1 0.86 0.76 0.90 .80
2 0.88 0.80 0.87 0.76
3 0.85 0.75 0.82 0.81
4 0.85 0.72 0.86 0.76
5 0.84 0.75 0.87 0.80

6 0.63 0.62 0.71 0.71

5 Experimentation

The experimentation process has been carried out with an Android smartphone
running a custom application to gather the gait signals from the built-in triple-
axis accelerometer. This simple program can perform measures for several hours
while being executed in the background. The user assigns a name and starts the
measure. When he/she decides to stop it, the application produces a .csv file in
the local storage media —e.g. the SD Card— with all the data recorded.
The device can be arbitrarily oriented, but it has to be placed attached to

the trunk of the person. Placing it on a limb —e.g. in a trouser’s pocket—
may produce different accelerations for opposite steps and therefore inaccurate
symmetry scores. In this case, the phone was introduced in a backpack in order
to be completely orientation-free, but it can be carried, for instance, in a shirt’s
pocket.
In order to easily test the proposed method, five measures were taken for

a healthy young male walking under normal conditions, namely, flat surface,
normal footwear and medium speed. Additionally, another measure was taken
for the same person, but this time, while carrying a weight in one of his hands
with the purpose of introduce some degree of dissymmetry.
As expected, the quality parameters have decreased for the sixth measure

(Table 1) proving that the method properly acknowledge the lack of symmetry
—and potentially the lack of homogeneity— in human gait. By contrast, the
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parameters for the rest of the measures show a remarkable similarity, indicating
that the system is also consistent.

6 Conclusions and Future Work

We have described a solution to model human gait quality from the accelerations
registered by an arbitrarily oriented smartphone. It successfully tracks the dif-
ferent states of walking and produces consistent quality measures under different
conditions.
Further and intensive experimentation has to be done to fully test the sys-

tem for longer periods of time, specially on ill patients. However, as shown, the
method is already a considerable step forward regarding other methods that
cope with gait quality by means of accelerometers, as it overcomes the drawback
of having to place the device under a given orientation.
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